Exitonservice.ru

Экситон Сервис
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ламповый источник тока в катоде

Смещение ламп выходного каскада

Напряжение смещения влияет на характер звука, правильную работу и срок службы ламп выходного каскада. Опытный пользователь может сам отрегулировать фиксированное напряжение смещения при замене ламп. В противном случае нужно доверить это дело специалисту. Рэндалл Смит из “Mesa Boogie” говорит: «за 12 лет активного ремонта гитарных усилителей одной из наиболее частых проблем является неправильная настройка Bias, либо его отклонение из-за вибрации».

Что такое смещение (bias)

Лампа усиливает сигнал, поданный на её управляющую сетку. Она будет делать это при наличии на сетке более отрицательного напряжения относительно катода. Тем самым регулируется количество электронов, которые проникают сквозь сетку на пути от катода к аноду. Меняя напряжение на сетке, мы можем менять напряжение на выходе (аноде). Существует две разновидности смещения:

  • Резистор между минусом источника питания и сеткой лампы сам устанавливает оптимальное отрицательное напряжение. Сопротивление этого резистора подбирается индивидуально для каждой конкретной лампы. При автоматическом смещении на катодном резисторе рассеивается относительно большая мощность, которая могла быть отдана в нагрузку. В качестве компенсации приходится увеличивать напряжение питания выходных ламп, что приводит к снижению КПД.
  • Фиксированное смещение подразумевает одно и то же отрицательное напряжение, которое настраивается переменным резистором на определенную величину. Такой тип позволяет получить более высокую мощность в ущерб качеству звука. Напряжение может формироваться через отдельный выпрямитель и обмотку силового трансформатора, поэтому практически не зависит от величины анодного напряжения, как в случае с автосмещением.

Push-Pull усилители

Двухтактный выходной каскад, также известный как класс «В» или «АВ», способен обеспечивать достаточно серьезную выходную мощность, в отличие от однотакта (single ended). В таком каскаде одна лампа (или несколько включенных параллельно) используется для восходящей части волны, а другая – для нисходящей части исходного сигнала. Очень похоже на качели, проталкивающие ток в акустическую систему через выходной трансформатор. Для достижения максимальной эффективности фиксированный bias сделан крайне отрицательным, вплоть до того момента, когда лампы могут усиливать только положительную полуволну – это известно как смещение вблизи отсечки.

В чистом классе «В» проблемы начинаются при переходе сигнала через нулевое значение. Лампы по своей природе имеют нелинейную характеристику – в наибольшей степени это проявляется в драйверном каскаде. Здесь появляются искажения типа «ступенька» (crossover distortion), возникающие при переходе сигнала через «ноль». Степень отклонения от линейной зависимости характеризуются общим коэффициентом гармоник (Кг).

Лучший способ противостоять таким искажениям – сделать одновременное усиление в области нулевого значения. Другими словами, отрицательная полуволна начнет усиливаться в тот момент, когда сигнал находится в верхней части амплитуды. То же самое должно происходить и в обратном направлении. Чем идеальнее соблюдение этого правила, тем больше усилитель приближается к классу «АВ» и «А».

Настройка смещения ламп выходного каскада

Как убедиться в правильной настройке смещения? Нужно измерить напряжение на катодном резисторе, подсоединив плюсовой щуп мультиметра к катоду лампы, а минусовой – на общий провод (минус питания). Для 6П14П это значение равно -6,5 В, для 6П3С равно -14 В. В схеме с фиксированным смещением можно отрегулировать нужное отрицательное напряжение с помощью переменного резистора или подбором номинала постоянного сопротивления. Таким образом, устанавливается ток покоя оконечного каскада.

При недостаточном напряжении смещения выходные лампы будут сильнее нагреваться и быстрее придут в негодность. От блока питания потребуется большая мощность, чем требуется.

При чрезмерно отрицательном напряжении смещения нелинейные искажения типа «ступенька» станут отчетливо слышны. Это также может повредить лампы тем самым образом, когда они используются в течение длительного времени без перерыва.

Особенно важен одинаковый ток покоя в лампах драйвера и оконечника. В противном случае на выходном трансформаторе будет дисбаланс по постоянному току. И усилитель не будет отдавать всю полезную мощность в нагрузку.

Возраст лампы и отклонения в смещении

Как известно, все лампы в процессе эксплуатации изнашиваются, начиная звучать блекло. Важным фактором в длительности эксплуатации является пропускная способность, или трансдуктивность. Она определяет силу тока, которую проводит лампа при заданном напряжении на управляющей сетке. Старые лампы со временем проводят меньший ток, нежели новые. Естественно, в процессе эксплуатации смещение может выходить из заданных значений, поскольку гитарные комбики подвержены также и механическим вибрациям.

Вот почему ламповые усилители нуждаются в небольшой профилактике хотя бы раз в 3-5 лет, и уж тем более после замены ламп.

Опыт с лампой-диодом

Чтобы ответить на этот вопрос, произведем такой опыт. Раскалим катод до нужной температуры и будем подавать на анод положительное напряжение, начиная с самого небольшого и постепенно увеличивая его.

При каждом изменении анодного напряжения будем по миллиамперметру отмечать величину тока в цепи. Если мы затем по записанным отсчетам построим график, откладывая по горизонтальной оси величины напряжения на аноде, а по вертикальной — соответствующие величины анодного тока, го получим кривую, подобную изображенной на рисунке.

Рис. 2. Зависимость анодного тока от напряжения на нем у лампы-диода.

При отсутствии анодного напряжения, т. е. при Са = 0, электроны к аноду не притягиваются, анодный ток будет равен нулю (Iа = 0). Анодный ток возникает после того, как на анод подано .положительное напряжение.

По мере его увеличения анодный ток будет возрастать, причем рост его до точки А вначале идет медленно, а затем быстрее. Такое быстрое возрастание тока продолжается, пока он не достигнет некоторого значения, соответствующего точке Б.

При дальнейшем повышении анодного напряжения рост анодного тока замедляется. Наконец, в точке В он достигает наибольшей величины. Дальнейшее повышение анодного напряжения уже не сопровождается увеличением анодного тока.

Кривая, показывающая зависимость величины анодного тока двухэлектродной лампы от напряжения на ее аноде, называется характеристикой лампы и служит для технических расчетов, связанных с использованием лампы.

Чем же объясняется такая форма характеристики диода? Чтобы понять это, проследим за происходящими в лампе процессами.

Вначале при отсутствии напряжения на аноде все излучаемые катодом электроны скапливаются вокруг него, образуя электронное облачко. При появлении на аноде небольшого положительного напряжения некоторые электроны, обладающие большей скоростью, чем остальные, начинают отрываться от облачка и устремляются к аноду, создавая небольшой анодный ток.

По мере увеличения анодного напряжения все большее количество электронов будет отрываться от облачка и притягиваться анодом. Наконец, при достаточно большом напряжении на аноде все электроны, окружающие катод, будут притянуты, электронное облачко совершенно «рассосется». Этот момент соответствует точке В характеристики лампы.

Читать еще:  Схема соединения ламп с двумя выключателями

При таком анодном напряжении все вылетающие из катода электроны будут немедленно притягиваться анодом. Дальнейшее увеличение анодного тока при данной величине накала невозможно. Для этого нужны дополнительные электроны, а их взять негде, вся эмиссия катода исчерпана.

Анодный ток такой величины, какая устанавливается при полном использовании всей эмиссии катода, называется током насыщения. Увеличить ток насыщения можно только одним способом — повысить накал катода, но этот способ не применяется, потому что он сокращает срок службы катода.

Параметры трансформатора ТС-160

Напряжения и токи предлагаемого к использованию автором трансформатора ТС-160 (160Вт).

Рис. 2. Принципиальная схема трансформатора ТС-160.

Первичная обмотка
Выводы
обмоток
Напряжение, ВТок, А
1 — 31270,6
1 — 2 — 2′ — 1′2200,35
1′ — 3′1270,6
Вторичная обмотка
Выводы
обмоток
Напряжение, ВТок, А
5 — 6421,1
5′ — 6′421,1
7 — 8660,9
7′ — 8′660,9
9 — 106,80,3
9′ — 10′6,80,3
11 — 126,93
11′ — 12′6,93

Параметры провода, используемого для намотки обмоток трансформатора ТС-160:

Выводы
обмоток
Число
витков
Марка и
диаметр
провода
Сопротивление,
Ом
1 — 2414ПЭЛ 0,693,3
2 — 364ПЭЛ 0,690,5
1′ — 2′414ПЭЛ 0,693,3
2′ — 3′64ПЭЛ 0,690,5
5 — 6158ПЭЛ 0,473,2
5′ — 6′158ПЭЛ 0,473,2
7 — 8250ПЭЛ 0,514
7′ — 8′250ПЭЛ 0,514
9 — 1026ПЭЛ 0,570,3
9′ — 10′26ПЭЛ 0,570,3
11 — 1226ПЭЛ 1,350,1
11′ — 12′26ПЭЛ 1,350,1

§ 3.12. Двухэлектродная электронная лампа — диод

Устройство диода

Диод представляет собой вакуумированный баллон, в котором находятся два электрода: вольфрамовая нить К, являющаяся источником электронов (катод), и металлический полуцилиндр А (анод), окружающий катод (рис. 3.30, а). В других типах ламп анод может быть замкнутым цилиндром, который расположен не горизонтально, как на рисунке 3.30, а, а вертикально.

В этом случае и катод, совпадающий с осью анода, тоже расположен вертикально. Условное изображение диода показано на рисунке 3.30, б.

В лампах прямого накала нить накала из вольфрама одновременно служит катодом. Для получения значительной эмиссии нить нагревают до температуры 2000—2500 К. Диод прямого накала имеет существенный недостаток. Если катод нагревается переменным током, то его температура из-за малой теплоемкости нити периодически изменяется, что вызывает колебания тока в цепи лампы. По этой причине в настоящее время диоды прямого накала почти не применяются. Вместо них применяются лампы с косвенным накалом или диоды с подогревным катодом.

В лампах с косвенным накалом катод представляет собой никелевую трубочку, покрытую слоем оксидов щелочно-земель-ных металлов — бария, стронция, кальция. Такой катод называют оксидным. Работа выхода электронов с поверхности оксидного катода в несколько раз меньше, чем с вольфрама. Это позволяет снизить температуру накала до 1000 К. Подогрев катода обеспечивается небольшой спиралью, расположенной внутри трубочки (рис. 3.31, а). Условное обозначение диода с подогревным катодом изображено на рисунке 3.31,6.

Вольт-амперная характеристика диода

Существенные свойства любого электронного прибора отражает его вольт-амперная характеристика, т. е. зависимость силы тока от напряжения, поданного на этот прибор. Для получения вольт-амперной характеристики вакуумного диода можно воспользоваться цепью, схема которой изображена на рисунке 3.32.

В отличие от характеристики металлического проводника эта характеристика нелинейная (рис. 3.33). Следовательно, электронная лампа представляет собой проводник, не подчиняющийся закону Ома.

Рассмотрим подробнее причину нелинейности вольт-амперной характеристики вакуумного диода. При вылете электронов из разогретого катода он заряжается положительно. Поэтому электроны, покинувшие катод, группируются возле него в виде объемного отрицательного заряда или так называемого электронного облака. Под действием электрического поля между катодом и электронным облаком электроны из облака частично возвращаются обратно на катод. В равновесном состоянии число электронов, покинувших катод в секунду, равно числу электронов, возвративихихся на него за это время. При таком динамическом равновесии среднее число электронов в электронном облаке остается неизменным. Чем выше температура металла, тем больше плотность электронного облака.

Если к электродам диода приложить напряжение, называемое анодным напряжением, присоединив анод к точке цепи, имеющей положительный потенциал, а катод — к точке с отрицательным потенцигшом (см. рис. 3.32), то между электродами возникнет электрическое поле. Под действием этого поля электроны начнут перемещаться от катода к аноду, образуя анодный ток. Электронное облако при этом начнет рассасываться. Из-за наличия электронного облака сила анодного тока I не пропорциональна анодному напряжению U. Если катод и анод представляют собой плоские пластины, параллельные друг другу (рис. 3.34), то в отсутствие электронного облака (при холодном катоде) распределение потенциала между катодом и анодом, образующими плоский конденсатор, изображается прямой линией 1.

При наличии электронного облака (при накаленном катоде) распределение потенциала изменяется: оно изображается теперь кривой 2. При этом значение потенциала в любой плоскости, находящейся на расстоянии х от катода, оказывается меньше, чем в отсутствие электронного облака, а следовательно, и скорости движения электронов при наличии электронного облака уменьшаются. С увеличением анодного напряжения концентрация электронов в облаке уменьшается. Поэтому и тормозящее действие объемного отрицательного заряда делается меньше, а сила анодного тока увеличивается.

Если катод не покрыт оксидным слоем, то при достаточно большом анодном напряжении все электроны, покинувшие катод, достигают анода, и при дальнейшем увеличении напряжения сила тока не изменяется. Такой ток называется током насыщения (штриховая линия на рисунке 3.35). При повышении температуры катода (это можно сделать, увеличив при помощи реостата силу тока в цепи накала) ток насыщения возрастает (см. рис. 3.35).

В электронной лампе с оксидным катодом достигнуть тока насыщения нельзя, ибо это требует столь больпюго анодного напряжения, при котором катод разрушается.

Применение вакуумных диодов

Важным свойством вакуумного диода является его односторонняя проводимость: электроны в нем движутся от раскаленного катода к аноду. Обратное направление тока невозможно. Приборы, обладающие свойством проводить ток только в одном направлении, называются электрическими вентилями.

Этим свойством двухэлектродной электронной лампы пользуются для выпрямления переменного тока*.

Лампа, применяемая для выпрямления токов промышленной частоты, называется кенотроном.

* Об устройстве выпрямителей переменного тока будет рассказано в дальнейшем.

#1 11.10.2015 17:38:59

Однотактный ламповый на 6П13С + 6Ж8 (6Г2)

После консультации с alss-ом было установлено, что имеется схемотехническая ошибка: питание анодное должно быть +350 Вольт. Заниженное питание отрицательно влияет на качество звука.
Необходимо выпаять силовой трансформатор и домотать вторичную (анодную) обмотку.

Читать еще:  Чтобы лампы не мигали с выключателем с подсветкой

Окончательная версия схемы:

Конденсаторы С1,С3 -типа КБГ-И. Подстроечный резистор R9 — ППБ-1, можно С5-35. Это хорошие проволочные резисторы. Электролиты FRACO, Германия.

«. Никогда и ничего не просите! Никогда и ничего, и в особенности у тех, кто сильнее вас. Сами предложат и сами всё дадут»
М.А.Булгаков

Стабилизированный источник питания для лампового усилителя

После публикации статьи Владимира Стародубцева «Линия Прибоя» (июль 2002) редакция получила много писем с просьбой рассказать о стабилизированном источнике питания, который применяется в последних версиях усилителей «Мустанг» и «Обертон». Описываемая ниже конструкция выполнена в виде самостоятельного блока и может обеспечить питанием любую схему, потребляющую по анодной цепи до 250 — 265 Вт.

Источник питания (ИП) является обязательной частью любой радиоэлектронной аппаратуры. Его качество, т.е. надёжность, экономичность, эксплуатационные свойства — в значительной мере определяет технические показатели всего аппарата. Постоянное повышение требований к техническим характеристикам усилительных устройств приводит к тому, что и к вторичным ИП предъявляются всё более жёсткие требования.

Анализ большинства серийных ламповых усилителей показывает, что ИП в них построен по традиционной схеме: сетевой трансформатор, выпрямитель (на диодах или кенотронах) и сглаживающий фильтр с конденсаторами, резисторами и дросселями). Напряжение такого ИП обычно нестабильно, из-за чего меняются режимы работы усилителя. При этом выходная мощность падает, а нелинейные искажения, наоборот, растут.

Сейчас очень популярны однотактники на прямонакальных триодах — 6С4С, 2А3, 300В и ГМ-70. Как правило, их выходная мощность невелика — от 3,5 до 25 Вт, и многие разработчики поддаются соблазну построить ИП по упрощенной схеме с П-фильтром. А между тем, звучание этих усилителей, как никаких других, зависит от качества питающего их источника. Более того, некоторые недостатки, считающиеся неотъемлемым атрибутом однотактных выходных каскадов и ограничивающие их распространение, — слабая динамика в нижнем диапазоне и плохо артикулированный бас — в 90 случаях из 100 являются следствием неправильной организации питания.

Многие пытаются решить проблему, наращивая ёмкость конденсаторов фильтра и увеличивая габариты выходного трансформатора. Это дает некоторый выигрыш в звучании, но главные проблемы остаются. И потом, до какой степени стоит наращивать ёмкости в блоке питания? Раньше в ходу был параметр «энергоёмкость ИП», выраженный в джоулях на ватт выходной мощности. Энергия, запасенная в конденсаторах фильтра, рассчитывается по формуле:

А = 1/2 * U 2 * C,

где А — в джоулях; U — в вольтах; С — в фарадах.

Если же А поделить на Pвых., то получим величину, характеризующую энергетические показатели усилителя. У серийных зарубежных усилителей эта величина находится в пределах 1,5 — 2,5 Дж/Вт. Много это или мало? Сказать трудно, хотя и позволяет в какой-то мере судить об энерговооруженности аппарата.

Нашему КБ тоже пришлось столкнуться с такой проблемой. Несколько лет назад мы получили заказ на разработку однотактного лампового усилителя с выходной мощностью не менее 30 — 35 Вт. Требования были сформулированы так: аппарат должен иметь динамику двухтактного, бас — как у транзисторного, а эмоциональность и музыкальность — как у однотактника. Ничего себе задачка? Не стану подробно описывать все муки творчества, скажу только, что в конце концов был выбран однотактный выходной каскад на двух 6С33С-В, запараллеленных через магнитный поток выходного трансформатора, причем с нагрузкой в цепи катода.

Когда мы сделали макет, выяснилось, что на номинальной мощности при изменении частоты сигнала от 400 до 40 Гц анодное напряжение падало с 200 до 160 В. Источник, несмотря на солидный запас мощности, не держал. Прослушивание музыки, богатой НЧ-составляющими, подтвердило результаты стендовых измерений: бас прорабатывался вяло.

Пришлось взяться за стабилизированный ИП, и чтобы не нарушать чистоту ламповой концепции, в качестве проходной выбрали лампу 6С33С-В. Которая, кстати, изначально и разрабатывалась для этих целей, поэтому наряду с большой токоотдачей имеет очень низкое внутреннее сопротивление. Но прежде чем перейти к описанию конструкции, рассмотрим общие принципы построения стабилизаторов напряжения.

Чаще всего применяются параметрические и компенсационные, причем последние бывают последовательные и параллельные (об этом уже успел рассказать Андрей Маркитанов, поэтому опустим подробности. — Прим. ред.). Параметрические — наиболее простые, они строятся на газоразрядных или кремниевых стабилитронах. Номенклатура последних довольно широка, что позволяет строить стабилизаторы с выходным напряжением от единиц до сотен вольт. Но любая простая схема далека от совершенства. В параметрическом стабилизаторе ток через нагрузку всегда должен быть меньше, чем через сам стабилитрон, поэтому к.п.д. таких стабилизаторов низок, и они уместны лишь при малой мощности потребителя.

Компенсационные стабилизаторы последовательного типа обладают хорошим к.п.д., высоким коэффициентом стабилизации и малым выходным сопротивлением. Поэтому они и получили столь широкое распространение. Однако и у них есть недостатки — низкая надёжность при перегрузках и коротком замыкании в нагрузке. Это особенно опасно в транзисторных схемах, поэтому приходится вводить в них сложные системы защиты с токовыми датчиками. Неоспоримое достоинство параллельных стабилизаторов — нечувствительность к форс-мажорным ситуациям. При к.з. в нагрузке напряжение на регулирующем элементе и ток, протекающий через него, резко уменьшаются, и никаких фатальных последствий не бывает. Но у параллельных стабилизаторов такие важные параметры, как к.п.д. и выходное сопротивление, оставляют желать лучшего. Стабилизирующие же качества обоих типов примерно одинаковы.

Поэтому наш выбор пал на последовательный стабилизатор, ведь лампы менее чувствительны к перегрузкам и к.з. Да и схема получается простой и надежной.

Упрощенно принцип ее работы показан на рис. 1.

И — измерительный элемент;

ЭС — элемент сравнения;

Uo — опорный элемент;

УПТ — уcилитель постоянного тока;

По сути, это управляемый делитель напряжения, в верхнем плече которого включён регулирующий элемент РЭ, а в нижнем — нагрузка Rн. У такого стабилизатора входной ток Iвх примерно равен току нагрузки Iн, и как следствие — высокий к.п.д. и малое потребление в режиме х.х. (при Iн = 0). Работает он следующим образом. При увеличении Uвх или уменьшении Iн, напряжение Uвых повышается, в результате чего напряжение на выходе измерительного элемента И превысит опорное Uо. В этом случае на выходе элемента сравнения ЭС будет напряжение Uc = UнКд-Uо (где Кд — коэффициент деления выходного напряжения измерительным элементом). Это напряжение повышается усилителем постоянного тока УПТ и поступает на регулирующий элемент РЭ. Под действием управляющего напряжения Uу падение напряжения на РЭ будет увеличиваться, а на выходе стабилизатора — уменьшаться. Этим обеспечивается обратное слежение (тот самый случай, когда без ООС не обойтись). В установившемся режиме выходное напряжение стабилизатора сохраняется практически постоянным. Его нестабильность при воздействии дестабилизирующих факторов будет тем меньше, чем больше коэффициент усиления УПТ.

Читать еще:  Как проверить выключатель настольную лампу

Итак, конкретный пример (рис. 2).

Как видите, нам пришлось стабилизировать не только анодное напряжение выходных ламп, но также драйвера и сеточных цепей. Это из-за того, что «просадка» источника сказывалась и на питании каскадов предварительного усиления, правда, в меньшей степени — отклонения от номинального значения были примерно 20 — 25%. Поскольку потребляемый ток здесь невелик, мы применили параметрический стабилизатор.

Описываемым ИП комплектуются усилители с выходной мощностью до 16 Вт в каждом канале. При необходимости напряжения на выходе можно изменить, устанавливая газовые стабилитроны с большим или меньшим напряжением стабилизации.

Детали и конструкция

Мы старались использовать по возможности широко распространённые и недорогие радиоэлементы — резисторы типа МЛТ, пленочные конденсаторы К73-17 и т.д. А вот электролитические конденсаторы желательно приобрести импортные, поскольку применение отечественных значительно увеличит габариты блока. Хотя на качестве и надежности источника это не скажется.

Лампы тоже не дефицитны — 6С33С-В, 6С19П, 6Н2П, СГ1П, СГ2П (СГ15-2). Можно применить стабилитроны и октальной серии, они красиво горят, но занимают больше места. Выпрямители построены на высокочастотных диодах 2Д213А, хотя можно использовать и «быстрые» импортные на соответствующие токи и напряжения. От кенотронов мы отказались из-за того, что они в данной конструкции усилителя ухудшали динамику.

Трансформаторы — основа любого ИП, и на них хочу остановиться более подробно. Дело в том, что при питании выходных каскадов, работающих в классе А, потребление энергии происходит постоянно и ток почти не зависит от амплитуды выходного сигнала. При этом сетевые трансформаторы всегда работают с полной нагрузкой. А так как к.п.д. усилителя класса А довольно низок, в лучшем случае это где-то 25%, а то и меньше, то потери в ИП довольно велики. Как правило, все они превращаются в тепло, и его необходимо отводить, иначе блок станет перегреваться, со всеми вытекающими неприятностями. Практика конструирования усилителей подобного рода в нашем КБ показала, что для надёжной работы без перегрева и гудения необходим 3 — 4-кратный запас габаритной мощности сетевого трансформатора по отношению к потребляемой. То есть, если ваш усилитель потребляет 100 Вт, выбирайте 300 — 400-ваттное железо, не ошибётесь.

В нашем же случае речь идёт о потреблении порядка 250 — 265 Вт, так что мощность сетевого трансформатора желательно иметь порядка 800 — 900 Вт. Из конструктивных соображений мы изготовили два трансформатора по 440 Вт и распределили нагрузку на них по возможности равномерно. В соответствии с вышеизложенными рекомендациями потребление от каждого из них составляет 120 — 130 Вт.

Обратите внимание, что напряжения на выводах трансформаторов указаны в режиме холостого хода.

Конструкция

Источник питания собран на каркасе размером 260 х 150 х 370 мм (Ш х В х Г), выполненном из алюминиевых уголков 15 х 15. На нем установлены трансформаторы и дроссели, а также плата стабилизатора. Снизу к каркасу прикреплены четыре опорные ножки и поддон. Лицевая панель выполнена из алюминия толщиной 5 — 8 мм, на ней находятся сетевой переключатель и индикатор включения. На задней стенке (алюминий толщиной 2 мм) установлен сетевой ввод, предохранитель, а также разъём, соединяющий источник питания с усилителем. Последний может быть любым, но учтите, что по цепям накала лампа 6С33С (а у нас их в усилителе две) потребляет 6,6 А, так что хотя бы пара контактов должна быть рассчитана на большой ток. Соединение с усилителем выполнено гибким жгутом длинной 0,5 — 0,75 м из провода типа МГТФ-0,35. В накальные линии необходимо заложить провод сечением не менее 5 мм2. Сверху каркас закрыт перфорированным кожухом.

Регулировка блока питания

Сначала невредно убедиться, что все обмотки двухкатушечных трансформаторов скоммутированы правильно и на их выводах присутствуют именно те напряжения, на которые вы рассчитывали. Затем подключаем стабилизаторы и вольтметром проверяем поочерёдно режимы каждого звена. В отличие от параллельных стабилизаторов последовательные можно включать без нагрузки, что мы и делаем. После 5 — 10-минутного прогрева устанавливаем подстроечными резисторами RT1 и RT2 выходные напряжения +210 и +350 В соответственно. Запас по регулированию должен быть примерно 20% в обе стороны. Затем подключаем эквивалент нагрузки. Для мощного каскада это может быть обычная лампа накаливания 100 Вт на 220 В, а для драйверного звена — резистор типа ПЭВ-50 сопротивлением 3500 Ом. Под нагрузкой напряжение не должно просаживаться более чем на 0,5 — 1 В. Погоняйте блок в таком режиме несколько часов, и если в схеме ничего не дымит и не перегревается, работу можно считать законченной.

Теперь посмотрим, стоило ли вообще затевать весь этот проект. Первое, что мы отметили после подключения усилителя, — стабильность его режимов при изменении напряжения питающей сети. При скачках на линии от +5% и -10% (а у нас в Таганроге бывает и больше) анодные, и что особенно важно, сеточные потенциалы не менялись. Сравнительное прослушивание двух аналогичных усилителей с разными ИП — традиционным и стабилизированным — показало, что последний явно обладает лучшей энергетикой. Звучание становится более плотным и насыщенным во всём спектре частот, улучшается микро- и макродинамика.

Эмоциональный эффект примерно тот же, что при сравнении усилителей с ООС и без неё. Слушать аппарат с нестабилизированным источником питания уже не хочется.

Январь 2003, г. Таганрог

Литература: [1]. Назаров С.В. «Транзисторные стабилизаторы напряжения». М., Энергия 1980 г.

[2]. Белопольский И.И., Тихонов В.И. «Транзисторные стабилизаторы на повышенные и высокие напряжения». М., Энергия 1971 г.

[3]. Ложников А.П., Сонин Е.К. «Каскодные усилители». М., Энергия 1969 г.

Где используются

У этих элементов имеется важное преимущество – устойчивость к обратному напряжению благодаря вакууму, поэтому они используются для преобразования переменного тока в постоянный:

  • в лазерной индустрии;
  • цифровой электронике;
  • медицинском оборудовании;
  • радио- и телеаппаратуре.

К недостаткам можно отнести сравнительно большие размеры и расход энергии на разогрев.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector