Exitonservice.ru

Экситон Сервис
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Релейная защита трансформатора с выключателем

  • 1 Продольная дифференциальная защита
    • 1.1 Принцип действия
    • 1.2 Область применения
  • 2 Поперечная дифференциальная защита
    • 2.1 Принцип действия
    • 2.2 Область применения
  • 3 Источники

Принцип действия [ править | править код ]

Принцип действия продольной дифференциальной защиты основан на сравнении токов фаз, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока (TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле (KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.

В нормальном режиме (1) значения величины силы тока вычитаются друг из друга, и в идеальном случае ток в цепи обмотки токового реле будет равен нулю. В случае возникновения короткого замыкания (2) на защищаемом участке на обмотку токового реле поступит уже не разность, а сумма токов, что заставит реле замкнуть свои контакты, выдав команду на отключение поврежденного участка.

В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса. Наличие тока небаланса объясняется рядом факторов:

  • Трансформаторы тока имеют недостаточно идентичные друг другу характеристики. Чтобы снизить влияние этого фактора, трансформаторы тока, предназначенные для дифференциальной защиты, изготавливают и поставляют попарно, подгоняя их друг к другу ещё на стадии производства. Кроме того, при использовании дифференциальной защиты, например трансформатора, у измерительных трансформаторов тока изменяют число витков в соответствии с коэффициентом трансформации защищаемого трансформатора.
  • Некоторое влияние на возникновение тока небаланса может оказывать намагничивающий ток, возникающий в обмотках защищаемого трансформатора. В нормальном режиме этот ток может достигать 5 % от номинального. При некоторых переходных процессах, например при включении трансформатора с холостого хода под нагрузку, ток намагничивания на короткое время может в несколько раз превышать номинальный ток. Для того чтобы учесть влияние намагничивающего тока, ток срабатывания реле принимают большим, чем максимальное значение намагничивающего тока.
  • Неодинаковое соединение обмоток первичной и вторичной стороны защищаемого трансформатора (например, при соединении обмоток Y/Δ) так же влияет на возникновение тока небаланса. В данном случае во вторичной цепи защищаемого трансформатора вектор тока будет смещён относительно тока в первичной цепи на 30°. Подобрать такое число витков у трансформаторов тока, которое позволило бы компенсировать эту разницу, невозможно. В этом случае угловой сдвиг компенсируют с помощью соединения обмоток: на стороне звезды обмотки трансформаторов тока соединяют треугольником, а на стороне треугольника соответственно звездой.

Следует отметить, что современные микропроцессорные устройства защиты способны учитывать эту разницу самостоятельно, и при их использовании, как правило, вторичные обмотки измерительных трансформаторов тока соединяют звездой на обоих концах защищаемого участка, указав это в настройках устройства защиты.

Область применения [ править | править код ]

Дифференциальная защита устанавливается в качестве основной для защиты трансформаторов и автотрансформаторов. Одним из недостатков такой защиты является сложность её исполнения: в частности, требуется наличие надёжной, помехозащищённой линии связи между двумя участками, на которых установлены трансформаторы тока. В связи с этим дифференциальную защиту применяют для защиты одиночно работающих трансформаторов и автотрансформаторов мощностью 6300 кВА и выше, параллельно работающих трансформаторов и автотрансформаторов мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не позволяет добиться необходимой чувствительности при коротком замыкании на выводах высокого напряжения, а максимальная токовая защита имеет выдержку времени более чем 0,5 с.

Деление защит трансформаторов на основные и резервные

Любой вид повреждения в трансформаторе несет потенциальную опасность, как целостности оборудования, так и надежности работы всей энергосистемы. Поэтому крайне важно грамотно отстраивать работу защит на электростанциях, тяговых и трансформаторных подстанциях, местных КТП и ТП. Для этой цели защита трансформатора условно подразделяется на две категории – основную и резервную.

Основная защита – это такой вид автоматики, который направлен на анализ внутреннего состояния трансформатора (обмоток, железа, дополнительного оборудования). Данный тип охватывает как само устройство, так и прилегающие к нему шины, провода и т.д.

Резервная защита охватывает те нарушения в работе, которые происходят за пределами трансформатора, но могут непосредственно повлиять на его проводники и внутренние элементы. Это всевозможные перегрузки, замыкания и перенапряжения в линиях, на смежных устройствах и т.д.

Рис. 2. Основные и резервные защиты

Поперечная дифференциальная защита линий электропередач

Защита построена идентично продольной и основана на принципе сравнивания токов, только для защиты ВЛ и КЛ, установка трансформаторов тока выполняется на разных линиях, питание, которых осуществляется от одного источника, например, от одного выключателя нагрузки, а не на концах участка линии. Трансформаторы тока должны быть идентичны по своим параметрам, их коэффициент трансформации должен быть одинаков.

Рис №2. Поперечная дифференциальная токовая защита параллельно расположенных высоковольтных линий, а) схема токовых цепей, б) цепи напряжения, г; д) – схема цепей постоянного тока.

После отключения одной из линий, блок-контактами высоковольтных выключателей, дифференциальная защита выводится из работы, это происходит для того, чтобы осуществить устранение неселективности действия при внешнем КЗ.

Принцип действия поперечной дифференциальной защиты, позволяет обходиться без настройки защиты на замедление действия, значит, при КЗ линии, произойдет мгновенное отключение, при КЗ в противоположных концах линии наблюдается каскадное (поочередное) действие дифференциальной защиты.

Рис№3. Каскадное срабатывание дифференциальной защиты: а) КЗ в начале ВЛ; б) КЗ в конце ВЛ

Основные условия выбора тока срабатывания:

  1. При внешних КЗ, не должно происходить срабатывание защиты от максимально высокого тока небаланса.
  2. При отключении одной из подключенных параллельно линий электропередач, если вторая линия полностью, на 100% загружена, не должна осуществляться работа защиты.
  3. Чувствительность защиты зависит от КЗ на границе каскадного действия рядом с точкой равной чувствительности, в которой наблюдается равенство токов в реле комплектов защит обеих линий.
Читать еще:  Как правильно выбрать выключатель нагрузки

Резервная токовая защиты

Защита трансформаторов от сверхтоков в обмотках, обусловленных внешними короткими замыканиями Для защиты понижающих трансформаторов от токов, обусловленных внешними короткими замыканиями, предусматривается максимальная токовая защита без пуска или с пуском от реле минимального напряжения, действующая на отключение выключателя.

В связи с наличием гальванической связи генератора с сетью потребителей по реактированной линии защита от замыканий на землю в обмотке статора выполнена на емкостном токе с применением трансформатора тока нулевой последовательности с подмагничиванием типа ТНПШ. Участком в данном случае служит одна из понижающих обмоток. При разряде кратковременно загорается лампа JIP.

Бычков АЛ. Гогичайшвили П. В связи с наличием гальванической связи генератора с сетью потребителей по реактированной линии защита от замыканий на землю в обмотке статора выполнена на емкостном токе с применением трансформатора тока нулевой последовательности с подмагничиванием типа ТНПШ.

Особенностью дифзащиты трансформаторов по сравнению с дифзащитой генераторов, линий и т. Фельдман А.

Используемая при отключенном выключателе Q2 дополнительная максимальная токовая защита МТЗ подключается ко вторичным обмоткам встроенных в трансформатор блока трансформаторов тока, соединенных в треугольник. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. Нагревательные элементы таких печей могут работать от пониженного напряжения от — Вольт.

Второе отделение газового реле подключается непосредственно к масляному контуру трансформатора и соединяет его вертикальные каналы, открывая путь для поднимающегося газа. Буренин А. Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них: Дифференциальная защита.

Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Сигнальная страховка при помощи специальных компьютерных программ. Защита трансформатора от перегрузки при наличии дежурного персонала должна выполняться с действием на сигнал. Федосеев А. С меньшей выдержкой времени на отключение ввода 10кВ, а с большей — на отключение трансформатора со всех сторон.

Защита трансформатора дифференциальная Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов: На понижающих одиночно работающих трансформаторах мощность которых выше чем кВА; При параллельной работе данных устройств с мощностью кВА и выше. С учетом этого номинальный ток предохранителя.
Как читать электрическую схему РЗА.

  • Предохранители и трехфазные выключатели,
  • Газовая защита,
  • Автоматическая релейная защита,
  • Дифференциальная защита.

Предохранители и трехфазные выключатели

Данный вид защиты применяется для контроля в мощных распределительных сетях. Предохранители и трехфазные выключатели осуществляют защиту от грозовых скачков напряжения. Очень эффективны в условиях производства для защиты и стабилизации напряжения.

Газовая защита

В стандартных защитах силовых трансформаторов имеются газовые реле, состоящие из двух отделений. Первое отделение служит для контроля нагнетающего газа из масла, устанавливается над расширительным баком. Когда уровень газа, проходящего через масло, доходит до максимума, реле начинает выпускать газ. Данный процесс происходит в виде небольших выхлопов или постепенного открытия клапанов. Сигнализатором уровня газа служит поплавок.

Газовое реле поплавкового типа: 1 — корпус, 2,5 — контакты, 3 — стержень, 4 — изоляция выводов, 6 — крышка, 7 — рамка, 8 — ось, 9 — верхний поплавок, 10 — нижний поплавок.

Газовое реле РГТ-80

Индикатор может не только показывать уровень, но и контролировать проходимость газов, а так же диагностировать работу трансформатора в целом.

Второе отделение реле подключается к масляному контуру трансформатора и соединяет его вертикальные каналы, открывая путь для поднимающегося газа.

Мембрана в расширительном баке является индикатором изменения давления. Повышение давления масла сжимает мембрану, диафрагма начинает двигаться. Движение диафрагмы может спровоцировать изменение атмосферного давления. При движении диафрагмы срабатывает специальный клапан отключающий трансформатор и включающий короткозамыкатель. Мембрана газового реле довольно хрупкая деталь, перестающая корректно работать при минимальном отклонении или повреждении (нуждается в полной замене).

Автоматическая релейная защита

Реле защиты трансформатора представляет собой небольшую емкость с маслом совмещенную с соединительной трубкой, выходящей из главного резервуара устройства. Реле используются в таких установках как трансформаторы дуговой плавки, морская техника и д.р. Реле защищают трансформаторы от коротких замыканий. Реле защиты состоят из двух элементов: резервуара и поплавка. Поплавок двигается вверх или вниз в зависимости от уровня масла, на поплавке устанавливается ртутный выключатель.

Нижний элемент реле состоит из перегородки ртутного индикатора. Данный элемент крепится напротив входа реле в трансформатор таким образом, что при поступлении масла с высоким давлением происходит его вытеснение.

Принцип действия релейной защиты довольно прост. Ртутный индикатор отключает трансформатор от сети когда падает уровень масла в баке трансформатора. Уровень масла подает в случае различных неисправностей, таких как нарушение изоляции, поломка сердечника и д.р.

Принцип выполнения реле РНТ

Дифференциальная защита трансформаторов

Дифференциальная защита устанавливается в высоковольтных сухих трансформаторах мощностью не более 5MVA с выключателями и контроллерами для защиты от замыканий и перенапряжений.

У дифференциальной защиты есть ряд преимуществ:

  • Есть возможность обнаружения неисправности в ТМГ изоляционного масла,
  • Дифференциальное реле сразу реагирует на любые повреждения цепей в зависимости от их классификации.
  • Данные защитные устройства могут самостоятельно выявлять практически все ошибки.
Читать еще:  Выключатели как элемент декора

Дифференциальные реле имеют самый простой принцип работы и устанавливаются непосредственно в трансформаторный шкаф. Реле сравнивают первичный и вторичный ток, в случае дисбаланса срабатывает защита.

Защита трансформатора в целом основана на контроле неравенства различных номинальных показателей: уровня масла, тока, напряжения сети и т. д.

Резервная токовая защиты

В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.

МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с дву­мя выдержками времени.

С меньшей выдержкой времени на отключение ввода 10кВ, а с большей – на отключение трансформатора со всех сторон.

В случае, когда с высокой стороны трансформатора установле­ны короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени действуют на включение короткозамыкателя, тем самым создавая искусс­твенное однофазное короткое замыкание, отключаемое защитой пита­ющих линий. В бестоковую паузу (при АПВ питающих линий) произво­дится автоматическое отключение отделителя, после чего повреж­денный трансформатор (автотрансформатор) оказывается полностью отключенным.

Передача команды – импульса на отключение выключателя с пи­тающей стороны линии при повреждении в трансформаторе, не имею­щем выключателя с высокой стороны, может выполняться и без вклю­чения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключе­ния по высокочастотному каналу.

С целью ближнего резервирования защит трансформатора пре­дусматривается резервная независимая МТЗ-110кВ.

Эта защита является полностью автономной как по цепям то­ка,оперативным цепям, так и по выходным цепям.

Резервная МТЗ-110 с выдержкой времени большей времени сра­батывания основной МТЗ-110 действует на отдельную катушку включения короткозамыкателя или на отдельную катушку отключения выключателя на стороне 110кВ.

С выдержкой времени большей времени действия защит на включение короткозамыкателя УРОКЗ действует на отключение отделителя.

При этом допускается разрешение отделителя во имя спасения самого трансформатора.

На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой пос­ледовательности, действующие на отключение трансформатора.

На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).

Дистанционные защиты предназначены для отключения междуфаз­ных к.з., а НТЗНП – для отключения одно- и двухфазных к.з. на землю.

Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.

Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки выс­шего напряжения АТ, дифзащиты шин среднего напряжения.

Цель О/У резервных защит АТ – ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.

Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.

Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключате­лей высшего напряжения, а со второй (большей) – на отключение АТ со всех сторон.

На ПС, имеющих на стороне 330кВ схему первичных соединений “полуторная”, резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со вто­рой – на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) – на отключение своего АТ со всех сторон.

Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны “секционированная С.Ш.” дейс­твуют с первой выдержкой времени на отключение ШСВ, со второй – на отключение своей стороны и с третьей – на отключение АТ со всех сторон.

Такое ступенчатое действие резервных защит позволяет сохра­нить в работе те АТ, которые отделяются от места к.з. после де­ления систем шин.

Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У – 750,

А/У-330) и при включении выключателей стороны среднего напряже­ния ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.

При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.

Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ

Защита выполняется только на выключателях с пофазным управ­лением.

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при включении выключателя одной или двумя фазами.

Защита действует на отключение трех фаз включаемого выклю­чателя.

Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по усло­вию отстройки от разновременности включения фаз выключателя.

Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.

Защита, как правило, действует на отключение АТ со всех сторон.

Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.

На АТ-750кВ для контроля состояния изо­ляции вводов 750кВ АТ применяется устройство КИВ-750.

Принцип действия устройства – измерение геометрической сум­мы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.

При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.

Читать еще:  Вакуумный выключатель рва tel

Устройство типа КИВ имеет измерительный элемент для опера­тивного контроля и отключающий элемент.

Отключающий элемент действует на отключение АТ со всех сто­рон.

Защита от перегрузки

В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.

Видео: Релейная защита. Вводная лекция

Что такое релейная защита, для чего она нужна. Основные характеристики, которыми должна обладать релейная защита.

Резервная релейная защита

Реле максимального тока не могут видеть разницу между коротким замыканием вне зоны действия релейной защиты. Именно поэтому если вы столкнетесь с опасной ситуацией, тогда сработает резервная релейная защита трансформатора. Вторым ее названием считается защита от сверхтоков и замыканий на землю. На сегодняшний день резервную релейную защиту трансформатора устанавливают со стороны питания трансформатора. Она должна отпускать предохранители как в первичной, так и во вторичной обмотке.

Реле защиты от сверхтоков и замыканий также может быть подключено к трансформатору со стороны нагрузки. В этом случае вам необходимо помнить о том, что реле не должны отключать предохранитель первичной обмотки трансформатора, как в случае с резервной релейной защитой трансформатора.

Управлять подобным трансформатором можно с помощью по току и времени, а также разнообразных установок по внешней нагрузочной характеристике. При необходимости вы также можете выставить максимально допустимую нагрузку трансформатора скоординировав ее с другими устройствами. При необходимости можете прочесть про трансформатор тмг.

Резервная релейная защита трансформатора может состоять из 4 элементов, к которым относят:

  1. Трех однофазных реле максимального тока.
  2. Одного реле замыкания на землю. Его необходимо подсоединить к верхнему узлу трех реле.

Нормальный диапазон установок по току может составлять от 50 до 200%. Реле замыкания на землю должно составлять от 2 до 80%.

На данный момент также можно встретить и другой диапазон настроек для реле замыкания на землю. Его следует установить в том месте, где ток замыкания на землю считается ограниченным из-за полного электрического сопротивления. Если устройство имеет нейтральное заземление обмотки путем параллельного соединения обычного реле замыкания на землю.

Реле максимально неограниченного тока и замыкания на землю обязательно должны иметь необходимую выдержку временем. Защита обязательно должна согласовываться с установками релейных защит другой цепи для обеспечения беспорядочного размыкания.

Надеемся, что эта информация станет полезной. С ее помощью вы легко сможете выполнить резервную релейную защиту для трансформатора.

Похожие статьи по теме

Поделитесь своим мнением Отменить ответ

Популярное на сайте

Опросы

  • Карта сайта
  • Обратная связь
  • Реклама на сайте
  • О сайте
  • Литература
  • Термины электрика

Наш сайт Все-электричество предоставляет вашему вниманию подробную информацию об электрике. Публикация наших материалов может разрешаться только в том случае если вы укажите ссылку на источник с указанием нашего проекта. Перед использованием нашего проекта рекомендуем прочесть пользовательское соглашение. Вся информация на сайте Все-электричество предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет.

ХарактеристикаЗначение
Число аналоговых входов по току6
Число дискретных входов16
Число дискретных входов для подключения сухих контактов3
Число дискретных выходных сигналов (групп контактов)12 (21)
Габаритные размеры (ВхШхГ), мм190х305х215
Масса, кг, не более7

IP52 со стороны лицевой панели

IP20 по остальным, кроме клемм подключения токовых цепей.

Устройство имеет полностью положительное заключение аттестационной комиссии ОАО «Россети» и рекомендовано к применению.

Устройство «Сириус-Т» доступно для заказа в нескольких исполнениях. Конкретное исполнение устройства указывается в его обозначении, состоящем из следующих элементов:

Устройство «Сириус-Т-tt-nn-ss», где

«Сириус-Т» — фирменное название устройства,
tt — исполнение устройства по номинальному току вторичной обмотки ТТ:
5/5 — ТТ стороны ВН — 5А, ТТ стороны НН -5А;
1/1 — ТТ стороны ВН — 1А, ТТ стороны НН -1А;
1/5 — ТТ стороны ВН — 1А, ТТ стороны НН -5А;

nnnB — исполнение устройства по напряжению оперативного тока:
24В — напряжение питания 24 В постоянного тока;
48В — напряжение питания 48 В постоянного тока;
110В — напряжение питания 110 В постоянного тока;
220В — напряжение питания 220 В постоянного или переменного тока;
220В DC — напряжение питания 220В только постоянного тока с дискретными входами, обеспечивающими формирование импульса режекции, в соответствии с требованиями СТО 56947007-29.120.40.102-2011;
БПТ-Р2 — напряжение питания 220В переменного тока со встроенными подпиткой от токовых цепей с реле дешунтирования. В исполнении БПТ в обозначении устройства токи вторичных обмоток не указываются;

ss — тип интерфейса связи с АСУ:
И1 — два интерфейса RS485;
И3 — один интерфейс RS485, один интерфейс Ethernet по «витой паре» (100BASE-TX) и протокол обмена Modbus TCP;
И5-FX –для исполнения с двумя оптическими интерфейсами Ethernet (100BASE-FX) и протоколами обмена МЭК61850 (редакция 2) и Modbus TCP;

Пример записи обозначения устройства «Сириус-Т» с напряжением оперативного питания 220 В, номинальными токами ТТ сторон ВН и НН 1А и 5А соответственно и дополнительным интерфейсом RS485: «Устройство Сириус-Т-1/5-220В-И1».

Пример записи обозначения устройства «Сириус-Т» с напряжением оперативного питания 220В переменного тока со встроенными подпиткой от токовых цепей и дополнительным интерфейсом RS485: «Устройство Сириус-Т-БПТ-Р2-И1».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector